LipidSigR
provides three network functions to quickly
generate input data for constructing networks. After running the
corresponding function, you will obtain the input data for a specific
network. The available networks include the Pathway Activity Network,
Lipid Reaction Network, and GATOM Network. Detailed instructions for
each are described in the following sections.
The input data must be a SummarizedExperiment object
deSp_se
generated by LipidSigR::deSp_twoGroup
.
Please read lipid species differential expression analysis
section in vignette("3_de")
.
To use our data as an example, follow the steps below.
# load package
library(LipidSigR)
# load the example SummarizedExperiment
data("de_data_twoGroup")
# data processing
processed_se <- data_process(
de_data_twoGroup, exclude_missing=TRUE, exclude_missing_pct=70,
replace_na_method='min', replace_na_method_ref=0.5,
normalization='Percentage')
# conduct differential expression analysis of lipid species
deSp_se <- deSp_twoGroup(
processed_se, ref_group='ctrl', test='t-test',
significant='pval', p_cutoff=0.05, FC_cutoff=1, transform='log10')
The network provides activity pathways among lipid classes.
Follow the instructions below to get the input data for constructing the network.
# generate table for constructing Pathway activity network
network_table <- nw_pathway_activity(deSp_se, organism='mouse')
# result summary
summary(network_table)
#> Length Class Mode
#> table_edge 11 data.frame list
#> table_node 9 tbl_df list
#> table_pathway_score 4 grouped_df list
#> table_zScore 8 data.frame list
After obtaining all the returned tables, you can use them to
construct a network. Here, we use the visNetwork
package to
display an example.
# network visualization
library(visNetwork)
network <- visNetwork(
nodes=network_table$table_node, edges=network_table$table_edge) %>%
visLayout(randomSeed=500) %>%
visPhysics(
solver='barnesHut', stabilization=TRUE,
barnesHut=list(gravitationalConstant=-3000)) %>%
visInteraction(navigationButtons=TRUE) %>%
visEvents(
dragEnd="function () {this.setOptions( { physics: false } );}") %>%
visEdges(color=list(color="#DDDDDD",highlight="#C62F4B")) %>%
visOptions(
highlightNearest=list(enabled=TRUE, degree=1, hover=FALSE),
selectedBy="group", nodesIdSelection=TRUE)
# view network
network
This network illustrates the important reactions of differentially expressed lipid classes and species.
Follow the instructions below to get the input data for constructing the network.
# generate table for constructing Lipid reaction network
network_table <- nw_lipid_reaction(
deSp_se, organism='mouse', show_sp='sigClass', show_all_reactions=FALSE,
sp_significant='pval', sp_p_cutoff=0.05, sp_FC_cutoff=1,
class_significant='pval', class_p_cutoff=0.05, class_FC_cutoff=1)
# result summary
summary(network_table)
#> Length Class Mode
#> table_edge 11 data.table list
#> table_node 9 data.table list
#> table_reaction 4 data.frame list
#> table_stat 4 data.frame list
After obtaining all the returned tables, you can use them to
construct a network. Here, we use the visNetwork
package to
display an example.
library(visNetwork)
# network visualization
network <- visNetwork(
nodes=network_table$table_node, edges=network_table$table_edge) %>%
visLayout(randomSeed=500) %>%
visPhysics(
solver='barnesHut', stabilization=TRUE,
barnesHut=list(gravitationalConstant=-2500)) %>%
visInteraction(navigationButtons=TRUE) %>%
visEvents(
dragEnd="function () {this.setOptions( { physics: false } );}") %>%
visOptions(
highlightNearest=list(enabled=TRUE, degree=1, hover=FALSE),
selectedBy="group", nodesIdSelection=TRUE)
# view network
network
The network shows the important reactions of differentially expressed lipid species.
Follow the instructions below to get the input data for constructing the network.
# generate table for constructing GATOM network
network_table <- nw_gatom(
deSp_se, organism='mouse', n_lipid=50, sp_significant='pval',
sp_p_cutoff=0.05, sp_FC_cutoff=1)
#> Registered S3 method overwritten by 'GGally':
#> method from
#> +.gg ggplot2
#> Found DE table for metabolites with Species IDs
#> Metabolite p-value threshold: 1.000000
#> Metabolite BU alpha: 0.043884
#> FDR for metabolites: 0.043894
# result summary
summary(network_table)
#> Length Class Mode
#> table_edge 17 data.table list
#> table_node 12 data.table list
#> table_reaction 4 data.table list
#> table_stat 3 data.table list
After obtaining all the returned tables, you can use them to
construct a network. Here, we use the visNetwork
package to
display an example.
library(visNetwork)
# network visualization
network <- visNetwork(
nodes=network_table$table_node, edges=network_table$table_edge) %>%
visLayout(randomSeed=500) %>%
visPhysics(
solver='barnesHut', stabilization=TRUE,
barnesHut=list(gravitationalConstant=-3000)) %>%
visInteraction(navigationButtons=TRUE) %>%
visEvents(
dragEnd="function () {this.setOptions( { physics: false } );}") %>%
visEdges(color=list(color="#DDDDDD",highlight="#C62F4B")) %>%
visOptions(
highlightNearest=list(enabled=TRUE, degree=1, hover=FALSE),
selectedBy="group", nodesIdSelection=TRUE)
# view network
network