This function returns node and edge tables that can be used to generate a network using the network visualization tool. It computes flux changes in the lipid reaction network, facilitating the identification of active or suppressed pathways.
nw_pathway_activity(deSp_se, organism = c("human", "mouse"))
A SummarizedExperiment object with results computed by deSp_twoGroup
.
Character. The species to which the genes will be matched.
Allowed species are "human" and "mouse". Default is 'human'
.
Return a list of 4 tables.
table_edge: a table of network edges.
table_node; a table of network nodes.
table_pathway_score: a table of pathway score
table_zScore: a table of z score.
data("de_data_twoGroup")
processed_se <- data_process(
se=de_data_twoGroup, exclude_missing=TRUE, exclude_missing_pct=70,
replace_na_method='min', replace_na_method_ref=0.5,
normalization='Percentage')
deSp_se <- deSp_twoGroup(
processed_se, ref_group='ctrl', test='t-test',
significant='pval', p_cutoff=0.05, FC_cutoff=1, transform='log10')
network_table <- nw_pathway_activity(deSp_se, organism='mouse')