This function generates a heatmap showing the correlation between the double bond and chain length of lipids.
A SummarizedExperiment object constructed by
as_summarized_experiment
and processed by data_process
.
Character. A lipid characteristic selected from the chain_db list
returned by list_lipid_char
.
Character/NULL. A feature selected by users from char
to visualize the specific plot for the selected category of that characteristic.
For example, if char is 'class' and char_feature is 'Cer', the resulting
plots will display data for 'Cer' within the 'class' category.
Set NULL to prevent selecting any feature as char_feature.
Character. Group name of the reference group. It must be one of the group names in the group information table's group column.
Character. The method to use for comparing means.
Allowed method include "t-test", "Wilcoxon test", "One-way ANOVA", and "Kruskal–Wallis test".
"t-test", "Wilcoxon test" are for two-group data, and "One-way ANOVA"
and "Kruskal–Wallis test" are for multi-group data. Default is 't-test'
.
Character. The p-value to be used for the statistically
significant. Must be one of "pval" or "padj". Default is 'pval'
.
Numeric. Significant level. Default is 0.05
.
Numeric. Significance of the fold-change, which is only
applicable for the two-group data. Default is 1
.
Character. Method for data transformation. Allowed methods
include "none", "log10", "square", "cube". Select 'none' to skip data transformation.
Default is 'log10'
.
Return a list of 2 lists.
total_chain: the result list of total chain.
each_chain: the result list of fatty acids chain.
data("de_data_twoGroup")
processed_se_twoGroup <- data_process(
se=de_data_twoGroup, exclude_missing=TRUE, exclude_missing_pct=70,
replace_na_method='min', replace_na_method_ref=0.5,
normalization='Percentage')
char_list <- list_lipid_char(processed_se_twoGroup)$chain_db_list
#> There are 4 ratio characteristics that can be converted in your dataset.
print(char_list)
#> Lipid classification Lipid classification
#> "Category" "Main.Class"
#> Lipid classification Lipid classification
#> "Sub.Class" "class"
#> Physical or chemical properties Physical or chemical properties
#> "Bilayer.Thickness" "Bond.type"
#> Physical or chemical properties Physical or chemical properties
#> "Headgroup.Charge" "Intrinsic.Curvature"
#> Physical or chemical properties Physical or chemical properties
#> "Lateral.Diffusion" "Transition.Temperature"
#> Cellular component Function
#> "Cellular.Component" "Function"
heatmap_all_twoGroup <- heatmap_chain_db(
processed_se_twoGroup, char='class', char_feature=NULL, ref_group='ctrl',
test='t-test', significant='pval', p_cutoff=0.05, FC_cutoff=1, transform='log10')
heatmap_one_twoGroup <- heatmap_chain_db(
processed_se_twoGroup, char='class', char_feature='PC', ref_group='ctrl',
test='t-test', significant='pval', p_cutoff=0.05, FC_cutoff=1, transform='log10')
data("se_multiGroup")
processed_se_multiGroup <- data_process(
se=se_multiGroup, exclude_missing=TRUE, exclude_missing_pct=70,
replace_na_method='min', replace_na_method_ref=0.5,
normalization='Percentage')
char_list <- list_lipid_char(processed_se_multiGroup)$chain_db_list
#> Warning: longer object length is not a multiple of shorter object length
#> There are 4 ratio characteristics that can be converted in your dataset.
print(char_list)
#> Lipid classification Lipid classification
#> "Category" "Main.Class"
#> Lipid classification Lipid classification
#> "Sub.Class" "class"
#> Physical or chemical properties Physical or chemical properties
#> "Bilayer.Thickness" "Bond.type"
#> Physical or chemical properties Physical or chemical properties
#> "Headgroup.Charge" "Intrinsic.Curvature"
#> Physical or chemical properties Physical or chemical properties
#> "Lateral.Diffusion" "Transition.Temperature"
#> Cellular component Function
#> "Cellular.Component" "Function"
heatmap_all_multiGroup <- heatmap_chain_db(
processed_se_multiGroup, char='class', char_feature=NULL, ref_group='ctrl',
test='One-way ANOVA', significant='pval', p_cutoff=0.05, FC_cutoff=NULL,
transform='log10')
heatmap_one_multiGroup <- heatmap_chain_db(
processed_se_multiGroup, char='class', char_feature='PC', ref_group='ctrl',
test='One-way ANOVA', significant='pval', p_cutoff=0.05, FC_cutoff=NULL,
transform='log10')