This function generates a heatmap showing the correlation between the double bond and chain length of lipids.
Arguments
- processed_se
A SummarizedExperiment object constructed by
as_summarized_experiment
and processed bydata_process
.- char
Character. A lipid characteristic selected from the chain_db list returned by
list_lipid_char
.- char_feature
Character/NULL. A feature selected by users from
char
to visualize the specific plot for the selected category of that characteristic. For example, if char is 'class' and char_feature is 'Cer', the resulting plots will display data for 'Cer' within the 'class' category. Set NULL to prevent selecting any feature as char_feature.- ref_group
Character. Group name of the reference group. It must be one of the group names in the group information table's group column.
- test
Character. The method to use for comparing means. Allowed method include "t-test", "Wilcoxon test", "One-way ANOVA", and "Kruskal–Wallis test". "t-test", "Wilcoxon test" are for two-group data, and "One-way ANOVA" and "Kruskal–Wallis test" are for multi-group data. Default is
't-test'
.- significant
Character. The p-value to be used for the statistically significant. Must be one of "pval" or "padj". Default is
'pval'
.- p_cutoff
Numeric. Significant level. Default is
0.05
.- FC_cutoff
Numeric. Significance of the fold-change, which is only applicable for the two-group data. Default is
1
.- transform
Character. Method for data transformation. Allowed methods include "none", "log10", "square", "cube". Select 'none' to skip data transformation. Default is
'log10'
.
Value
Return a list of 2 lists.
total_chain: the result list of total chain.
each_chain: the result list of fatty acids chain.
Examples
data("de_data_twoGroup")
processed_se_twoGroup <- data_process(
se=de_data_twoGroup, exclude_missing=TRUE, exclude_missing_pct=70,
replace_na_method='min', replace_na_method_ref=0.5,
normalization='Percentage', transform='log10')
char_list <- list_lipid_char(processed_se_twoGroup)$chain_db_list
#> There are 4 ratio characteristics that can be converted in your dataset.
print(char_list)
#> Lipid classification Lipid classification
#> "Category" "Main.Class"
#> Lipid classification Lipid classification
#> "Sub.Class" "class"
#> Physical or chemical properties Physical or chemical properties
#> "Bilayer.Thickness" "Bond.type"
#> Physical or chemical properties Physical or chemical properties
#> "Headgroup.Charge" "Intrinsic.Curvature"
#> Physical or chemical properties Physical or chemical properties
#> "Lateral.Diffusion" "Transition.Temperature"
#> Cellular component Function
#> "Cellular.Component" "Function"
heatmap_all_twoGroup <- heatmap_chain_db(
processed_se_twoGroup, char='class', char_feature=NULL, ref_group='ctrl',
test='t-test', significant='pval', p_cutoff=0.05, FC_cutoff=1, transform='log10')
heatmap_one_twoGroup <- heatmap_chain_db(
processed_se_twoGroup, char='class', char_feature='PC', ref_group='ctrl',
test='t-test', significant='pval', p_cutoff=0.05, FC_cutoff=1, transform='log10')
data("se_multiGroup")
processed_se_multiGroup <- data_process(
se=se_multiGroup, exclude_missing=TRUE, exclude_missing_pct=70,
replace_na_method='min', replace_na_method_ref=0.5,
normalization='Percentage', transform='log10')
char_list <- list_lipid_char(processed_se_multiGroup)$chain_db_list
#> There are 4 ratio characteristics that can be converted in your dataset.
print(char_list)
#> Lipid classification Lipid classification
#> "Category" "Main.Class"
#> Lipid classification Lipid classification
#> "Sub.Class" "class"
#> Physical or chemical properties Physical or chemical properties
#> "Bilayer.Thickness" "Bond.type"
#> Physical or chemical properties Physical or chemical properties
#> "Headgroup.Charge" "Intrinsic.Curvature"
#> Physical or chemical properties Physical or chemical properties
#> "Lateral.Diffusion" "Transition.Temperature"
#> Cellular component Function
#> "Cellular.Component" "Function"
heatmap_all_multiGroup <- heatmap_chain_db(
processed_se_multiGroup, char='class', char_feature=NULL, ref_group='ctrl',
test='One-way ANOVA', significant='pval', p_cutoff=0.05, FC_cutoff=NULL,
transform='log10')
heatmap_one_multiGroup <- heatmap_chain_db(
processed_se_multiGroup, char='class', char_feature='PC', ref_group='ctrl',
test='One-way ANOVA', significant='pval', p_cutoff=0.05, FC_cutoff=NULL,
transform='log10')